619 lines
20 KiB
JavaScript
619 lines
20 KiB
JavaScript
|
|
/* eslint-disable */
|
||
|
|
/**
|
||
|
|
* This is a specialized version of earcut, updated to take into account links between outer edges and holes whenever possible.
|
||
|
|
* Modified by Foundry LLC
|
||
|
|
*
|
||
|
|
* ISC License
|
||
|
|
*
|
||
|
|
* Copyright (c) 2016, Mapbox
|
||
|
|
*
|
||
|
|
* Permission to use, copy, modify, and/or distribute this software for any purpose
|
||
|
|
* with or without fee is hereby granted, provided that the above copyright notice
|
||
|
|
* and this permission notice appear in all copies.
|
||
|
|
*
|
||
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
|
||
|
|
* REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
||
|
|
* FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
|
||
|
|
* INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
|
||
|
|
* OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
|
||
|
|
* TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
|
||
|
|
* THIS SOFTWARE.
|
||
|
|
*/
|
||
|
|
(function() {
|
||
|
|
|
||
|
|
function earcutEdges(data, holeIndices) {
|
||
|
|
const dim = 3;
|
||
|
|
const hasHoles = holeIndices && holeIndices.length
|
||
|
|
let outerLen = hasHoles ? holeIndices[0] * dim : data.length;
|
||
|
|
let outerNode = linkedList(data, 0, outerLen, dim, true);
|
||
|
|
const triangles = [];
|
||
|
|
|
||
|
|
if ( !outerNode || outerNode.next === outerNode.prev ) return triangles;
|
||
|
|
let minX, minY, maxX, maxY, x, y, z, invSize;
|
||
|
|
if ( hasHoles ) outerNode = eliminateHoles(data, holeIndices, outerNode, dim);
|
||
|
|
|
||
|
|
// if the shape is not too simple, we'll use z-order curve hash later; calculate polygon bbox
|
||
|
|
if ( data.length > 240 ) {
|
||
|
|
minX = maxX = data[0];
|
||
|
|
minY = maxY = data[1];
|
||
|
|
for ( let i = dim; i < outerLen; i += dim ) {
|
||
|
|
x = data[i];
|
||
|
|
y = data[i + 1];
|
||
|
|
z = data[i + 2];
|
||
|
|
if ( x < minX ) minX = x;
|
||
|
|
if ( y < minY ) minY = y;
|
||
|
|
if ( x > maxX ) maxX = x;
|
||
|
|
if ( y > maxY ) maxY = y;
|
||
|
|
}
|
||
|
|
// minX, minY and invSize are later used to transform coords into integers for z-order calculation
|
||
|
|
invSize = Math.max(maxX - minX, maxY - minY);
|
||
|
|
invSize = invSize !== 0 ? 1 / invSize : 0;
|
||
|
|
}
|
||
|
|
|
||
|
|
earcutLinked(outerNode, triangles, dim, minX, minY, invSize);
|
||
|
|
return triangles;
|
||
|
|
}
|
||
|
|
|
||
|
|
// create a circular doubly linked list from polygon points in the specified winding order
|
||
|
|
function linkedList(data, start, end, dim, clockwise) {
|
||
|
|
let i, last;
|
||
|
|
if ( clockwise === (signedArea(data, start, end, dim) > 0) ) {
|
||
|
|
for ( i = start; i < end; i += dim ) last = insertNode(i, data[i], data[i + 1], data[i + 2], last);
|
||
|
|
}
|
||
|
|
else {
|
||
|
|
for ( i = end - dim; i >= start; i -= dim ) last = insertNode(i, data[i], data[i + 1], data[i + 2], last);
|
||
|
|
}
|
||
|
|
if ( last && equals(last, last.next) ) {
|
||
|
|
removeNode(last);
|
||
|
|
last = last.next;
|
||
|
|
}
|
||
|
|
|
||
|
|
return last;
|
||
|
|
}
|
||
|
|
|
||
|
|
// eliminate colinear or duplicate points
|
||
|
|
function filterPoints(start, end) {
|
||
|
|
if ( !start ) return start;
|
||
|
|
if ( !end ) end = start;
|
||
|
|
|
||
|
|
let p = start, again;
|
||
|
|
do {
|
||
|
|
again = false;
|
||
|
|
if ( !p.steiner && (equals(p, p.next) || area(p.prev, p, p.next) === 0) ) {
|
||
|
|
removeNode(p);
|
||
|
|
p = end = p.prev;
|
||
|
|
if ( p === p.next ) break;
|
||
|
|
again = true;
|
||
|
|
}
|
||
|
|
else {
|
||
|
|
p = p.next;
|
||
|
|
}
|
||
|
|
} while ( again || p !== end );
|
||
|
|
|
||
|
|
return end;
|
||
|
|
}
|
||
|
|
|
||
|
|
// main ear slicing loop which triangulates a polygon (given as a linked list)
|
||
|
|
function earcutLinked(ear, triangles, dim, minX, minY, invSize, pass = 0, verifyEdges = true) {
|
||
|
|
if ( !ear ) return;
|
||
|
|
|
||
|
|
// interlink polygon nodes in z-order
|
||
|
|
if ( !pass && invSize ) indexCurve(ear, minX, minY, invSize);
|
||
|
|
|
||
|
|
let stop = ear, prev, next;
|
||
|
|
|
||
|
|
// iterate through ears, slicing them one by one
|
||
|
|
while ( ear.prev !== ear.next ) {
|
||
|
|
prev = ear.prev;
|
||
|
|
next = ear.next;
|
||
|
|
|
||
|
|
if ( invSize ? isEarHashed(ear, minX, minY, invSize, verifyEdges) : isEar(ear, verifyEdges) ) {
|
||
|
|
|
||
|
|
triangles.push(prev.i / dim);
|
||
|
|
triangles.push(ear.i / dim);
|
||
|
|
triangles.push(next.i / dim);
|
||
|
|
|
||
|
|
removeNode(ear);
|
||
|
|
|
||
|
|
// skipping the next vertex leads to less sliver triangles
|
||
|
|
ear = next.next;
|
||
|
|
stop = next.next;
|
||
|
|
continue;
|
||
|
|
}
|
||
|
|
|
||
|
|
ear = next;
|
||
|
|
|
||
|
|
// if we looped through the whole remaining polygon and can't find any more ears
|
||
|
|
if ( ear === stop ) {
|
||
|
|
// try filtering points and slicing again
|
||
|
|
if ( !pass ) {
|
||
|
|
earcutLinked(filterPoints(ear), triangles, dim, minX, minY, invSize, 1, verifyEdges);
|
||
|
|
}
|
||
|
|
else if ( pass === 1 ) {
|
||
|
|
// if this didn't work, try curing all small self-intersections locally
|
||
|
|
ear = cureLocalIntersections(filterPoints(ear), triangles, dim);
|
||
|
|
earcutLinked(ear, triangles, dim, minX, minY, invSize, 2, false);
|
||
|
|
}
|
||
|
|
else if ( pass === 2 ) {
|
||
|
|
splitEarcut(ear, triangles, dim, minX, minY, invSize);
|
||
|
|
}
|
||
|
|
break;
|
||
|
|
}
|
||
|
|
}
|
||
|
|
}
|
||
|
|
|
||
|
|
// check whether a polygon node forms a valid ear with adjacent nodes
|
||
|
|
function isEar(ear, verifyEdges) {
|
||
|
|
let a = ear.prev, b = ear, c = ear.next;
|
||
|
|
|
||
|
|
if ( (a.z === b.z) && (a.z === c.z) && (b.z === c.z) && verifyEdges ) return false;
|
||
|
|
if ( area(a, b, c) >= 0 ) return false; // reflex, can't be an ear
|
||
|
|
|
||
|
|
// now make sure we don't have other points inside the potential ear
|
||
|
|
let p = ear.next.next;
|
||
|
|
|
||
|
|
while ( p !== ear.prev ) {
|
||
|
|
if ( pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y) && area(p.prev, p, p.next) >= 0 ) return false;
|
||
|
|
p = p.next;
|
||
|
|
}
|
||
|
|
return true;
|
||
|
|
}
|
||
|
|
|
||
|
|
function isEarHashed(ear, minX, minY, invSize, verifyEdges) {
|
||
|
|
let a = ear.prev, b = ear, c = ear.next;
|
||
|
|
|
||
|
|
if ( (a.z === b.z) && (a.z === c.z) && (b.z === c.z) && verifyEdges ) return false; // checking if edges depth are matching
|
||
|
|
if ( area(a, b, c) >= 0 ) return false; // reflex, can't be an ear
|
||
|
|
|
||
|
|
// triangle bbox; min & max are calculated like this for speed
|
||
|
|
let minTX = a.x < b.x ? (a.x < c.x ? a.x : c.x) : (b.x < c.x ? b.x : c.x),
|
||
|
|
minTY = a.y < b.y ? (a.y < c.y ? a.y : c.y) : (b.y < c.y ? b.y : c.y),
|
||
|
|
maxTX = a.x > b.x ? (a.x > c.x ? a.x : c.x) : (b.x > c.x ? b.x : c.x),
|
||
|
|
maxTY = a.y > b.y ? (a.y > c.y ? a.y : c.y) : (b.y > c.y ? b.y : c.y);
|
||
|
|
|
||
|
|
// z-order range for the current triangle bbox;
|
||
|
|
let minZ = zOrder(minTX, minTY, minX, minY, invSize), maxZ = zOrder(maxTX, maxTY, minX, minY, invSize);
|
||
|
|
|
||
|
|
let p = ear.prevZ, n = ear.nextZ;
|
||
|
|
|
||
|
|
// look for points inside the triangle in both directions
|
||
|
|
while ( p && p.zc >= minZ && n && n.zc <= maxZ ) {
|
||
|
|
if ( p !== ear.prev && p !== ear.next && pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y) && area(p.prev, p, p.next) >= 0 ) return false;
|
||
|
|
p = p.prevZ;
|
||
|
|
|
||
|
|
if ( n !== ear.prev && n !== ear.next && pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, n.x, n.y) && area(n.prev, n, n.next) >= 0 ) return false;
|
||
|
|
n = n.nextZ;
|
||
|
|
}
|
||
|
|
|
||
|
|
// look for remaining points in decreasing z-order
|
||
|
|
while ( p && p.zc >= minZ ) {
|
||
|
|
if ( p !== ear.prev && p !== ear.next && pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y) && area(p.prev, p, p.next) >= 0 ) return false;
|
||
|
|
p = p.prevZ;
|
||
|
|
}
|
||
|
|
|
||
|
|
// look for remaining points in increasing z-order
|
||
|
|
while ( n && n.zc <= maxZ ) {
|
||
|
|
if ( n !== ear.prev && n !== ear.next && pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, n.x, n.y) && area(n.prev, n, n.next) >= 0 ) return false;
|
||
|
|
n = n.nextZ;
|
||
|
|
}
|
||
|
|
return true;
|
||
|
|
}
|
||
|
|
|
||
|
|
// go through all polygon nodes and cure small local self-intersections
|
||
|
|
function cureLocalIntersections(start, triangles, dim) {
|
||
|
|
let p = start;
|
||
|
|
do {
|
||
|
|
let a = p.prev, b = p.next.next;
|
||
|
|
if ( !equals(a, b) && intersects(a, p, p.next, b) && locallyInside(a, b)
|
||
|
|
&& locallyInside(b, a) && !((a.z === b.z) && (a.z === p.z) && (b.z === p.z)) ) {
|
||
|
|
|
||
|
|
triangles.push(a.i / dim);
|
||
|
|
triangles.push(p.i / dim);
|
||
|
|
triangles.push(b.i / dim);
|
||
|
|
|
||
|
|
// remove two nodes involved
|
||
|
|
removeNode(p);
|
||
|
|
removeNode(p.next);
|
||
|
|
|
||
|
|
p = start = b;
|
||
|
|
}
|
||
|
|
p = p.next;
|
||
|
|
} while ( p !== start );
|
||
|
|
|
||
|
|
return filterPoints(p);
|
||
|
|
}
|
||
|
|
|
||
|
|
// try splitting polygon into two and triangulate them independently
|
||
|
|
function splitEarcut(start, triangles, dim, minX, minY, invSize) {
|
||
|
|
// look for a valid diagonal that divides the polygon into two
|
||
|
|
let a = start;
|
||
|
|
do {
|
||
|
|
let b = a.next.next;
|
||
|
|
while ( b !== a.prev ) {
|
||
|
|
if ( a.i !== b.i && isValidDiagonal(a, b) ) {
|
||
|
|
// split the polygon in two by the diagonal
|
||
|
|
let c = splitPolygon(a, b);
|
||
|
|
|
||
|
|
// filter colinear points around the cuts
|
||
|
|
a = filterPoints(a, a.next);
|
||
|
|
c = filterPoints(c, c.next);
|
||
|
|
|
||
|
|
// run earcut on each half
|
||
|
|
earcutLinked(a, triangles, dim, minX, minY, invSize, false);
|
||
|
|
earcutLinked(c, triangles, dim, minX, minY, invSize, false);
|
||
|
|
return;
|
||
|
|
}
|
||
|
|
b = b.next;
|
||
|
|
}
|
||
|
|
a = a.next;
|
||
|
|
} while ( a !== start );
|
||
|
|
}
|
||
|
|
|
||
|
|
// link every hole into the outer loop, producing a single-ring polygon without holes
|
||
|
|
function eliminateHoles(data, holeIndices, outerNode, dim) {
|
||
|
|
let queue = [], i, len, start, end, list;
|
||
|
|
for ( i = 0, len = holeIndices.length; i < len; i++ ) {
|
||
|
|
start = holeIndices[i] * dim;
|
||
|
|
end = i < len - 1 ? holeIndices[i + 1] * dim : data.length;
|
||
|
|
list = linkedList(data, start, end, dim, false);
|
||
|
|
if ( list === list.next ) list.steiner = true;
|
||
|
|
queue.push(getLeftmost(list));
|
||
|
|
}
|
||
|
|
queue.sort(compareX);
|
||
|
|
|
||
|
|
// process holes from left to right
|
||
|
|
for ( i = 0; i < queue.length; i++ ) {
|
||
|
|
outerNode = eliminateHole(queue[i], outerNode);
|
||
|
|
outerNode = filterPoints(outerNode, outerNode.next);
|
||
|
|
}
|
||
|
|
return outerNode;
|
||
|
|
}
|
||
|
|
|
||
|
|
function compareX(a, b) {
|
||
|
|
return a.x - b.x;
|
||
|
|
}
|
||
|
|
|
||
|
|
// find a bridge between vertices that connects hole with an outer ring and and link it
|
||
|
|
function eliminateHole(hole, outerNode) {
|
||
|
|
let bridge = findHoleBridge(hole, outerNode);
|
||
|
|
if ( !bridge ) {
|
||
|
|
return outerNode;
|
||
|
|
}
|
||
|
|
let bridgeReverse = splitPolygon(bridge, hole);
|
||
|
|
// filter collinear points around the cuts
|
||
|
|
let filteredBridge = filterPoints(bridge, bridge.next);
|
||
|
|
filterPoints(bridgeReverse, bridgeReverse.next);
|
||
|
|
|
||
|
|
// Check if input node was removed by the filtering
|
||
|
|
return outerNode === bridge ? filteredBridge : outerNode;
|
||
|
|
}
|
||
|
|
|
||
|
|
// David Eberly's algorithm for finding a bridge between hole and outer polygon
|
||
|
|
function findHoleBridge(hole, outerNode) {
|
||
|
|
let p = outerNode, hx = hole.x, hy = hole.y, qx = -Infinity, m;
|
||
|
|
|
||
|
|
// find a segment intersected by a ray from the hole's leftmost point to the left;
|
||
|
|
// segment's endpoint with lesser x will be potential connection point
|
||
|
|
do {
|
||
|
|
if ( hy <= p.y && hy >= p.next.y && p.next.y !== p.y ) {
|
||
|
|
let x = p.x + (hy - p.y) * (p.next.x - p.x) / (p.next.y - p.y);
|
||
|
|
if ( x <= hx && x > qx ) {
|
||
|
|
qx = x;
|
||
|
|
if ( x === hx ) {
|
||
|
|
if ( hy === p.y ) return p;
|
||
|
|
if ( hy === p.next.y ) return p.next;
|
||
|
|
}
|
||
|
|
m = p.x < p.next.x ? p : p.next;
|
||
|
|
}
|
||
|
|
}
|
||
|
|
p = p.next;
|
||
|
|
} while ( p !== outerNode );
|
||
|
|
|
||
|
|
if ( !m ) return null;
|
||
|
|
if ( hx === qx ) return m; // hole touches outer segment; pick leftmost endpoint
|
||
|
|
|
||
|
|
// look for points inside the triangle of hole point, segment intersection and endpoint;
|
||
|
|
// if there are no points found, we have a valid connection;
|
||
|
|
// otherwise choose the point of the minimum angle with the ray as connection point
|
||
|
|
let stop = m, mx = m.x, my = m.y, tanMin = Infinity, tan;
|
||
|
|
p = m;
|
||
|
|
|
||
|
|
do {
|
||
|
|
if ( hx >= p.x && p.x >= mx && hx !== p.x && pointInTriangle(hy < my ? hx : qx, hy, mx, my, hy < my ? qx : hx, hy, p.x, p.y) ) {
|
||
|
|
tan = Math.abs(hy - p.y) / (hx - p.x); // tangential
|
||
|
|
if ( locallyInside(p, hole) && (tan < tanMin || (tan === tanMin && (p.x > m.x || (p.x === m.x && sectorContainsSector(m, p))))) ) {
|
||
|
|
m = p;
|
||
|
|
tanMin = tan;
|
||
|
|
}
|
||
|
|
}
|
||
|
|
p = p.next;
|
||
|
|
} while ( p !== stop );
|
||
|
|
|
||
|
|
return m;
|
||
|
|
}
|
||
|
|
|
||
|
|
// whether sector in vertex m contains sector in vertex p in the same coordinates
|
||
|
|
function sectorContainsSector(m, p) {
|
||
|
|
return area(m.prev, m, p.prev) < 0 && area(p.next, m, m.next) < 0;
|
||
|
|
}
|
||
|
|
|
||
|
|
// interlink polygon nodes in z-order
|
||
|
|
function indexCurve(start, minX, minY, invSize) {
|
||
|
|
let p = start;
|
||
|
|
do {
|
||
|
|
if ( p.zc === null ) p.zc = zOrder(p.x, p.y, minX, minY, invSize);
|
||
|
|
p.prevZ = p.prev;
|
||
|
|
p.nextZ = p.next;
|
||
|
|
p = p.next;
|
||
|
|
} while ( p !== start );
|
||
|
|
|
||
|
|
p.prevZ.nextZ = null;
|
||
|
|
p.prevZ = null;
|
||
|
|
|
||
|
|
sortLinked(p);
|
||
|
|
}
|
||
|
|
|
||
|
|
// Simon Tatham's linked list merge sort algorithm
|
||
|
|
// http://www.chiark.greenend.org.uk/~sgtatham/algorithms/listsort.html
|
||
|
|
function sortLinked(list) {
|
||
|
|
let i, p, q, e, tail, numMerges, pSize, qSize, inSize = 1;
|
||
|
|
|
||
|
|
do {
|
||
|
|
p = list;
|
||
|
|
list = null;
|
||
|
|
tail = null;
|
||
|
|
numMerges = 0;
|
||
|
|
|
||
|
|
while ( p ) {
|
||
|
|
numMerges++;
|
||
|
|
q = p;
|
||
|
|
pSize = 0;
|
||
|
|
for ( i = 0; i < inSize; i++ ) {
|
||
|
|
pSize++;
|
||
|
|
q = q.nextZ;
|
||
|
|
if ( !q ) break;
|
||
|
|
}
|
||
|
|
qSize = inSize;
|
||
|
|
|
||
|
|
while ( pSize > 0 || (qSize > 0 && q) ) {
|
||
|
|
if ( pSize !== 0 && (qSize === 0 || !q || p.zc <= q.zc) ) {
|
||
|
|
e = p;
|
||
|
|
p = p.nextZ;
|
||
|
|
pSize--;
|
||
|
|
}
|
||
|
|
else {
|
||
|
|
e = q;
|
||
|
|
q = q.nextZ;
|
||
|
|
qSize--;
|
||
|
|
}
|
||
|
|
|
||
|
|
if ( tail ) tail.nextZ = e; else list = e;
|
||
|
|
e.prevZ = tail;
|
||
|
|
tail = e;
|
||
|
|
}
|
||
|
|
p = q;
|
||
|
|
}
|
||
|
|
tail.nextZ = null;
|
||
|
|
inSize *= 2;
|
||
|
|
} while ( numMerges > 1 );
|
||
|
|
|
||
|
|
return list;
|
||
|
|
}
|
||
|
|
|
||
|
|
// z-order of a point given coords and inverse of the longer side of data bbox
|
||
|
|
function zOrder(x, y, minX, minY, invSize) {
|
||
|
|
// coords are transformed into non-negative 15-bit integer range
|
||
|
|
x = 32767 * (x - minX) * invSize;
|
||
|
|
y = 32767 * (y - minY) * invSize;
|
||
|
|
|
||
|
|
x = (x | (x << 8)) & 0x00FF00FF;
|
||
|
|
x = (x | (x << 4)) & 0x0F0F0F0F;
|
||
|
|
x = (x | (x << 2)) & 0x33333333;
|
||
|
|
x = (x | (x << 1)) & 0x55555555;
|
||
|
|
|
||
|
|
y = (y | (y << 8)) & 0x00FF00FF;
|
||
|
|
y = (y | (y << 4)) & 0x0F0F0F0F;
|
||
|
|
y = (y | (y << 2)) & 0x33333333;
|
||
|
|
y = (y | (y << 1)) & 0x55555555;
|
||
|
|
|
||
|
|
return x | (y << 1);
|
||
|
|
}
|
||
|
|
|
||
|
|
// find the leftmost node of a polygon ring
|
||
|
|
function getLeftmost(start) {
|
||
|
|
let p = start, leftmost = start;
|
||
|
|
do {
|
||
|
|
if ( p.x < leftmost.x || (p.x === leftmost.x && p.y < leftmost.y) ) leftmost = p;
|
||
|
|
p = p.next;
|
||
|
|
} while ( p !== start );
|
||
|
|
return leftmost;
|
||
|
|
}
|
||
|
|
|
||
|
|
// check if a point lies within a convex triangle
|
||
|
|
function pointInTriangle(ax, ay, bx, by, cx, cy, px, py) {
|
||
|
|
return (cx - px) * (ay - py) - (ax - px) * (cy - py) >= 0 && (ax - px) * (by - py) - (bx - px) * (ay - py) >= 0 && (bx - px) * (cy - py) - (cx - px) * (by - py) >= 0;
|
||
|
|
}
|
||
|
|
|
||
|
|
// check if a diagonal between two polygon nodes is valid (lies in polygon interior)
|
||
|
|
function isValidDiagonal(a, b) {
|
||
|
|
return a.next.i !== b.i && a.prev.i !== b.i && !intersectsPolygon(a, b) && // dones't intersect other edges
|
||
|
|
(locallyInside(a, b) && locallyInside(b, a) && middleInside(a, b) && // locally visible
|
||
|
|
(area(a.prev, a, b.prev) || area(a, b.prev, b)) || // does not create opposite-facing sectors
|
||
|
|
equals(a, b) && area(a.prev, a, a.next) > 0 && area(b.prev, b, b.next) > 0); // special zero-length case
|
||
|
|
}
|
||
|
|
|
||
|
|
// signed area of a triangle
|
||
|
|
function area(p, q, r) {
|
||
|
|
return (q.y - p.y) * (r.x - q.x) - (q.x - p.x) * (r.y - q.y);
|
||
|
|
}
|
||
|
|
|
||
|
|
// check if two points are equal
|
||
|
|
function equals(p1, p2) {
|
||
|
|
return p1.x === p2.x && p1.y === p2.y;
|
||
|
|
}
|
||
|
|
|
||
|
|
// check if two segments intersect
|
||
|
|
function intersects(p1, q1, p2, q2) {
|
||
|
|
let o1 = sign(area(p1, q1, p2));
|
||
|
|
let o2 = sign(area(p1, q1, q2));
|
||
|
|
let o3 = sign(area(p2, q2, p1));
|
||
|
|
let o4 = sign(area(p2, q2, q1));
|
||
|
|
|
||
|
|
if ( o1 !== o2 && o3 !== o4 ) return true; // general case
|
||
|
|
|
||
|
|
if ( o1 === 0 && onSegment(p1, p2, q1) ) return true; // p1, q1 and p2 are collinear and p2 lies on p1q1
|
||
|
|
if ( o2 === 0 && onSegment(p1, q2, q1) ) return true; // p1, q1 and q2 are collinear and q2 lies on p1q1
|
||
|
|
if ( o3 === 0 && onSegment(p2, p1, q2) ) return true; // p2, q2 and p1 are collinear and p1 lies on p2q2
|
||
|
|
if ( o4 === 0 && onSegment(p2, q1, q2) ) return true; // p2, q2 and q1 are collinear and q1 lies on p2q2
|
||
|
|
|
||
|
|
return false;
|
||
|
|
}
|
||
|
|
|
||
|
|
// for collinear points p, q, r, check if point q lies on segment pr
|
||
|
|
function onSegment(p, q, r) {
|
||
|
|
return q.x <= Math.max(p.x, r.x) && q.x >= Math.min(p.x, r.x) && q.y <= Math.max(p.y, r.y) && q.y >= Math.min(p.y, r.y);
|
||
|
|
}
|
||
|
|
|
||
|
|
function sign(num) {
|
||
|
|
return num > 0 ? 1 : num < 0 ? -1 : 0;
|
||
|
|
}
|
||
|
|
|
||
|
|
// check if a polygon diagonal intersects any polygon segments
|
||
|
|
function intersectsPolygon(a, b) {
|
||
|
|
let p = a;
|
||
|
|
do {
|
||
|
|
if ( p.i !== a.i && p.next.i !== a.i && p.i !== b.i && p.next.i !== b.i && intersects(p, p.next, a, b) ) return true;
|
||
|
|
p = p.next;
|
||
|
|
} while ( p !== a );
|
||
|
|
return false;
|
||
|
|
}
|
||
|
|
|
||
|
|
// check if a polygon diagonal is locally inside the polygon
|
||
|
|
function locallyInside(a, b) {
|
||
|
|
return area(a.prev, a, a.next) < 0 ? area(a, b, a.next) >= 0 && area(a, a.prev, b) >= 0 : area(a, b, a.prev) < 0 || area(a, a.next, b) < 0;
|
||
|
|
}
|
||
|
|
|
||
|
|
// check if the middle point of a polygon diagonal is inside the polygon
|
||
|
|
function middleInside(a, b) {
|
||
|
|
let p = a, inside = false, px = (a.x + b.x) / 2, py = (a.y + b.y) / 2;
|
||
|
|
do {
|
||
|
|
if ( ((p.y > py) !== (p.next.y > py)) && p.next.y !== p.y && (px < (p.next.x - p.x) * (py - p.y) / (p.next.y - p.y) + p.x) ) inside = !inside;
|
||
|
|
p = p.next;
|
||
|
|
} while ( p !== a );
|
||
|
|
return inside;
|
||
|
|
}
|
||
|
|
|
||
|
|
// link two polygon vertices with a bridge; if the vertices belong to the same ring, it splits polygon into two;
|
||
|
|
// if one belongs to the outer ring and another to a hole, it merges it into a single ring
|
||
|
|
function splitPolygon(a, b) {
|
||
|
|
let a2 = new Node(a.i, a.x, a.y, a.z), b2 = new Node(b.i, b.x, b.y, b.z), an = a.next, bp = b.prev;
|
||
|
|
a.next = b;
|
||
|
|
b.prev = a;
|
||
|
|
a2.next = an;
|
||
|
|
an.prev = a2;
|
||
|
|
b2.next = a2;
|
||
|
|
a2.prev = b2;
|
||
|
|
bp.next = b2;
|
||
|
|
b2.prev = bp;
|
||
|
|
return b2;
|
||
|
|
}
|
||
|
|
|
||
|
|
// create a node and optionally link it with previous one (in a circular doubly linked list)
|
||
|
|
function insertNode(i, x, y, z, last) {
|
||
|
|
let p = new Node(i, x, y, z);
|
||
|
|
|
||
|
|
if ( !last ) {
|
||
|
|
p.prev = p;
|
||
|
|
p.next = p;
|
||
|
|
}
|
||
|
|
else {
|
||
|
|
p.next = last.next;
|
||
|
|
p.prev = last;
|
||
|
|
last.next.prev = p;
|
||
|
|
last.next = p;
|
||
|
|
}
|
||
|
|
return p;
|
||
|
|
}
|
||
|
|
|
||
|
|
function removeNode(p) {
|
||
|
|
p.next.prev = p.prev;
|
||
|
|
p.prev.next = p.next;
|
||
|
|
if ( p.prevZ ) p.prevZ.nextZ = p.nextZ;
|
||
|
|
if ( p.nextZ ) p.nextZ.prevZ = p.prevZ;
|
||
|
|
}
|
||
|
|
|
||
|
|
function Node(i, x, y, z) {
|
||
|
|
// vertex index in coordinates array
|
||
|
|
this.i = i;
|
||
|
|
|
||
|
|
// vertex coordinates
|
||
|
|
this.x = x;
|
||
|
|
this.y = y;
|
||
|
|
this.z = z; // depth
|
||
|
|
|
||
|
|
// previous and next vertex nodes in a polygon ring
|
||
|
|
this.prev = null;
|
||
|
|
this.next = null;
|
||
|
|
|
||
|
|
// z-order curve value
|
||
|
|
this.zc = null;
|
||
|
|
|
||
|
|
// previous and next nodes in z-order
|
||
|
|
this.prevZ = null;
|
||
|
|
this.nextZ = null;
|
||
|
|
|
||
|
|
// indicates whether this is a steiner point
|
||
|
|
this.steiner = false;
|
||
|
|
}
|
||
|
|
|
||
|
|
// return a percentage difference between the polygon area and its triangulation area;
|
||
|
|
// used to verify correctness of triangulation
|
||
|
|
earcutEdges.deviation = function(data, holeIndices, dim, triangles) {
|
||
|
|
let hasHoles = holeIndices && holeIndices.length;
|
||
|
|
let outerLen = hasHoles ? holeIndices[0] * dim : data.length;
|
||
|
|
let polygonArea = Math.abs(signedArea(data, 0, outerLen, dim));
|
||
|
|
if ( hasHoles ) {
|
||
|
|
for ( let i = 0, len = holeIndices.length; i < len; i++ ) {
|
||
|
|
let start = holeIndices[i] * dim;
|
||
|
|
let end = i < len - 1 ? holeIndices[i + 1] * dim : data.length;
|
||
|
|
polygonArea -= Math.abs(signedArea(data, start, end, dim));
|
||
|
|
}
|
||
|
|
}
|
||
|
|
let trianglesArea = 0;
|
||
|
|
for ( let i = 0; i < triangles.length; i += 3 ) {
|
||
|
|
let a = triangles[i] * dim;
|
||
|
|
let b = triangles[i + 1] * dim;
|
||
|
|
let c = triangles[i + 2] * dim;
|
||
|
|
trianglesArea += Math.abs((data[a] - data[c]) * (data[b + 1] - data[a + 1]) - (data[a] - data[b]) * (data[c + 1] - data[a + 1]));
|
||
|
|
}
|
||
|
|
return polygonArea === 0 && trianglesArea === 0 ? 0 : Math.abs((trianglesArea - polygonArea) / polygonArea);
|
||
|
|
};
|
||
|
|
|
||
|
|
function signedArea(data, start, end, dim) {
|
||
|
|
let sum = 0;
|
||
|
|
for ( let i = start, j = end - dim; i < end; i += dim ) {
|
||
|
|
sum += (data[j] - data[i]) * (data[i + 1] + data[j + 1]);
|
||
|
|
j = i;
|
||
|
|
}
|
||
|
|
return sum;
|
||
|
|
}
|
||
|
|
|
||
|
|
// turn a polygon in a multi-dimensional array form (e.g. as in GeoJSON) into a form Earcut accepts
|
||
|
|
earcutEdges.flatten = function(data) {
|
||
|
|
let dim = data[0][0].length, result = {vertices: [], holes: [], dimensions: dim}, holeIndex = 0;
|
||
|
|
|
||
|
|
for ( let i = 0; i < data.length; i++ ) {
|
||
|
|
for ( let j = 0; j < data[i].length; j++ ) {
|
||
|
|
for ( let d = 0; d < dim; d++ ) result.vertices.push(data[i][j][d]);
|
||
|
|
}
|
||
|
|
if ( i > 0 ) {
|
||
|
|
holeIndex += data[i - 1].length;
|
||
|
|
result.holes.push(holeIndex);
|
||
|
|
}
|
||
|
|
}
|
||
|
|
return result;
|
||
|
|
};
|
||
|
|
|
||
|
|
globalThis.earcut = {earcutEdges};
|
||
|
|
})();
|