/** * The edge detection filter for {@link foundry.canvas.SMAAFilter}. */ export default class SMAAEdgeDetectionFilter extends PIXI.Filter { /** * @param {SMAAFilterConfig} config */ constructor(config) { super(VERTEX_SOURCE, generateFragmentSource(config)); } } /* -------------------------------------------- */ /** * The vertex shader source of {@link SMAAEdgeDetectionFilter}. * @type {string} */ const VERTEX_SOURCE = `\ #define mad(a, b, c) (a * b + c) attribute vec2 aVertexPosition; uniform mat3 projectionMatrix; uniform vec4 inputSize; uniform vec4 inputPixel; uniform vec4 outputFrame; #define resolution (inputPixel.xy) #define SMAA_RT_METRICS (inputPixel.zwxy) varying vec2 vTexCoord0; varying vec4 vOffset[3]; void main() { vTexCoord0 = aVertexPosition * (outputFrame.zw * inputSize.zw); vOffset[0] = mad(SMAA_RT_METRICS.xyxy, vec4(-1.0, 0.0, 0.0, -1.0), vTexCoord0.xyxy); vOffset[1] = mad(SMAA_RT_METRICS.xyxy, vec4( 1.0, 0.0, 0.0, 1.0), vTexCoord0.xyxy); vOffset[2] = mad(SMAA_RT_METRICS.xyxy, vec4(-2.0, 0.0, 0.0, -2.0), vTexCoord0.xyxy); vec3 position = vec3(aVertexPosition * max(outputFrame.zw, vec2(0.0)) + outputFrame.xy, 1.0); gl_Position = vec4((projectionMatrix * position).xy, 0.0, 1.0); } `; /* -------------------------------------------- */ /** * The fragment shader source of {@link SMAAEdgeDetectionFilter}. * @param {SMAAFilterConfig} config * @returns {string} */ function generateFragmentSource(config) { return `\ precision highp float; /** * Color Edge Detection * * IMPORTANT NOTICE: color edge detection requires gamma-corrected colors, and * thus 'colorTex' should be a non-sRGB texture. */ #define SMAA_THRESHOLD ${config.threshold.toFixed(8)} #define SMAA_LOCAL_CONTRAST_ADAPTATION_FACTOR ${config.localContrastAdaptionFactor.toFixed(8)} uniform sampler2D uSampler; // colorTex #define colorTex uSampler varying vec2 vTexCoord0; varying vec4 vOffset[3]; void main() { // Calculate the threshold: vec2 threshold = vec2(SMAA_THRESHOLD); // Calculate color deltas: vec4 delta; vec3 c = texture2D(colorTex, vTexCoord0).rgb; vec3 cLeft = texture2D(colorTex, vOffset[0].xy).rgb; vec3 t = abs(c - cLeft); delta.x = max(max(t.r, t.g), t.b); vec3 cTop = texture2D(colorTex, vOffset[0].zw).rgb; t = abs(c - cTop); delta.y = max(max(t.r, t.g), t.b); // We do the usual threshold: vec2 edges = step(threshold, delta.xy); // Then discard if there is no edge: if (dot(edges, vec2(1.0, 1.0)) == 0.0) discard; // Calculate right and bottom deltas: vec3 cRight = texture2D(colorTex, vOffset[1].xy).rgb; t = abs(c - cRight); delta.z = max(max(t.r, t.g), t.b); vec3 cBottom = texture2D(colorTex, vOffset[1].zw).rgb; t = abs(c - cBottom); delta.w = max(max(t.r, t.g), t.b); // Calculate the maximum delta in the direct neighborhood: vec2 maxDelta = max(delta.xy, delta.zw); // Calculate left-left and top-top deltas: vec3 cLeftLeft = texture2D(colorTex, vOffset[2].xy).rgb; t = abs(c - cLeftLeft); delta.z = max(max(t.r, t.g), t.b); vec3 cTopTop = texture2D(colorTex, vOffset[2].zw).rgb; t = abs(c - cTopTop); delta.w = max(max(t.r, t.g), t.b); // Calculate the final maximum delta: maxDelta = max(maxDelta.xy, delta.zw); float finalDelta = max(maxDelta.x, maxDelta.y); // Local contrast adaptation: edges.xy *= step(finalDelta, SMAA_LOCAL_CONTRAST_ADAPTATION_FACTOR * delta.xy); gl_FragColor = vec4(edges, 0.0, 1.0); } `; }