import { MeshGeometry } from "@pixi/mesh"; class RopeGeometry extends MeshGeometry { /** * @param width - The width (i.e., thickness) of the rope. * @param points - An array of {@link PIXI.Point} objects to construct this rope. * @param textureScale - By default the rope texture will be stretched to match * rope length. If textureScale is positive this value will be treated as a scaling * factor and the texture will preserve its aspect ratio instead. To create a tiling rope * set baseTexture.wrapMode to {@link PIXI.WRAP_MODES.REPEAT} and use a power of two texture, * then set textureScale=1 to keep the original texture pixel size. * In order to reduce alpha channel artifacts provide a larger texture and downsample - * i.e. set textureScale=0.5 to scale it down twice. */ constructor(width = 200, points, textureScale = 0) { super( new Float32Array(points.length * 4), new Float32Array(points.length * 4), new Uint16Array((points.length - 1) * 6) ), this.points = points, this._width = width, this.textureScale = textureScale, this.build(); } /** * The width (i.e., thickness) of the rope. * @readonly */ get width() { return this._width; } /** Refreshes Rope indices and uvs */ build() { const points = this.points; if (!points) return; const vertexBuffer = this.getBuffer("aVertexPosition"), uvBuffer = this.getBuffer("aTextureCoord"), indexBuffer = this.getIndex(); if (points.length < 1) return; vertexBuffer.data.length / 4 !== points.length && (vertexBuffer.data = new Float32Array(points.length * 4), uvBuffer.data = new Float32Array(points.length * 4), indexBuffer.data = new Uint16Array((points.length - 1) * 6)); const uvs = uvBuffer.data, indices = indexBuffer.data; uvs[0] = 0, uvs[1] = 0, uvs[2] = 0, uvs[3] = 1; let amount = 0, prev = points[0]; const textureWidth = this._width * this.textureScale, total = points.length; for (let i = 0; i < total; i++) { const index = i * 4; if (this.textureScale > 0) { const dx = prev.x - points[i].x, dy = prev.y - points[i].y, distance = Math.sqrt(dx * dx + dy * dy); prev = points[i], amount += distance / textureWidth; } else amount = i / (total - 1); uvs[index] = amount, uvs[index + 1] = 0, uvs[index + 2] = amount, uvs[index + 3] = 1; } let indexCount = 0; for (let i = 0; i < total - 1; i++) { const index = i * 2; indices[indexCount++] = index, indices[indexCount++] = index + 1, indices[indexCount++] = index + 2, indices[indexCount++] = index + 2, indices[indexCount++] = index + 1, indices[indexCount++] = index + 3; } uvBuffer.update(), indexBuffer.update(), this.updateVertices(); } /** refreshes vertices of Rope mesh */ updateVertices() { const points = this.points; if (points.length < 1) return; let lastPoint = points[0], nextPoint, perpX = 0, perpY = 0; const vertices = this.buffers[0].data, total = points.length, halfWidth = this.textureScale > 0 ? this.textureScale * this._width / 2 : this._width / 2; for (let i = 0; i < total; i++) { const point = points[i], index = i * 4; i < points.length - 1 ? nextPoint = points[i + 1] : nextPoint = point, perpY = -(nextPoint.x - lastPoint.x), perpX = nextPoint.y - lastPoint.y; let ratio = (1 - i / (total - 1)) * 10; ratio > 1 && (ratio = 1); const perpLength = Math.sqrt(perpX * perpX + perpY * perpY); perpLength < 1e-6 ? (perpX = 0, perpY = 0) : (perpX /= perpLength, perpY /= perpLength, perpX *= halfWidth, perpY *= halfWidth), vertices[index] = point.x + perpX, vertices[index + 1] = point.y + perpY, vertices[index + 2] = point.x - perpX, vertices[index + 3] = point.y - perpY, lastPoint = point; } this.buffers[0].update(); } update() { this.textureScale > 0 ? this.build() : this.updateVertices(); } } export { RopeGeometry }; //# sourceMappingURL=RopeGeometry.mjs.map