import { Point, Polygon, State, settings, DRAW_MODES } from "@pixi/core"; import { Container } from "@pixi/display"; import { MeshBatchUvs } from "./MeshBatchUvs.mjs"; const tempPoint = new Point(), tempPolygon = new Polygon(), _Mesh = class _Mesh2 extends Container { /** * @param geometry - The geometry the mesh will use. * @param {PIXI.MeshMaterial} shader - The shader the mesh will use. * @param state - The state that the WebGL context is required to be in to render the mesh * if no state is provided, uses {@link PIXI.State.for2d} to create a 2D state for PixiJS. * @param drawMode - The drawMode, can be any of the {@link PIXI.DRAW_MODES} constants. */ constructor(geometry, shader, state, drawMode = DRAW_MODES.TRIANGLES) { super(), this.geometry = geometry, this.shader = shader, this.state = state || State.for2d(), this.drawMode = drawMode, this.start = 0, this.size = 0, this.uvs = null, this.indices = null, this.vertexData = new Float32Array(1), this.vertexDirty = -1, this._transformID = -1, this._roundPixels = settings.ROUND_PIXELS, this.batchUvs = null; } /** * Includes vertex positions, face indices, normals, colors, UVs, and * custom attributes within buffers, reducing the cost of passing all * this data to the GPU. Can be shared between multiple Mesh objects. */ get geometry() { return this._geometry; } set geometry(value) { this._geometry !== value && (this._geometry && (this._geometry.refCount--, this._geometry.refCount === 0 && this._geometry.dispose()), this._geometry = value, this._geometry && this._geometry.refCount++, this.vertexDirty = -1); } /** * To change mesh uv's, change its uvBuffer data and increment its _updateID. * @readonly */ get uvBuffer() { return this.geometry.buffers[1]; } /** * To change mesh vertices, change its uvBuffer data and increment its _updateID. * Incrementing _updateID is optional because most of Mesh objects do it anyway. * @readonly */ get verticesBuffer() { return this.geometry.buffers[0]; } /** Alias for {@link PIXI.Mesh#shader}. */ set material(value) { this.shader = value; } get material() { return this.shader; } /** * The blend mode to be applied to the Mesh. Apply a value of * `PIXI.BLEND_MODES.NORMAL` to reset the blend mode. * @default PIXI.BLEND_MODES.NORMAL; */ set blendMode(value) { this.state.blendMode = value; } get blendMode() { return this.state.blendMode; } /** * If true PixiJS will Math.floor() x/y values when rendering, stopping pixel interpolation. * Advantages can include sharper image quality (like text) and faster rendering on canvas. * The main disadvantage is movement of objects may appear less smooth. * To set the global default, change {@link PIXI.settings.ROUND_PIXELS} * @default false */ set roundPixels(value) { this._roundPixels !== value && (this._transformID = -1), this._roundPixels = value; } get roundPixels() { return this._roundPixels; } /** * The multiply tint applied to the Mesh. This is a hex value. A value of * `0xFFFFFF` will remove any tint effect. * * Null for non-MeshMaterial shaders * @default 0xFFFFFF */ get tint() { return "tint" in this.shader ? this.shader.tint : null; } set tint(value) { this.shader.tint = value; } /** * The tint color as a RGB integer * @ignore */ get tintValue() { return this.shader.tintValue; } /** The texture that the Mesh uses. Null for non-MeshMaterial shaders */ get texture() { return "texture" in this.shader ? this.shader.texture : null; } set texture(value) { this.shader.texture = value; } /** * Standard renderer draw. * @param renderer - Instance to renderer. */ _render(renderer) { const vertices = this.geometry.buffers[0].data; this.shader.batchable && this.drawMode === DRAW_MODES.TRIANGLES && vertices.length < _Mesh2.BATCHABLE_SIZE * 2 ? this._renderToBatch(renderer) : this._renderDefault(renderer); } /** * Standard non-batching way of rendering. * @param renderer - Instance to renderer. */ _renderDefault(renderer) { const shader = this.shader; shader.alpha = this.worldAlpha, shader.update && shader.update(), renderer.batch.flush(), shader.uniforms.translationMatrix = this.transform.worldTransform.toArray(!0), renderer.shader.bind(shader), renderer.state.set(this.state), renderer.geometry.bind(this.geometry, shader), renderer.geometry.draw(this.drawMode, this.size, this.start, this.geometry.instanceCount); } /** * Rendering by using the Batch system. * @param renderer - Instance to renderer. */ _renderToBatch(renderer) { const geometry = this.geometry, shader = this.shader; shader.uvMatrix && (shader.uvMatrix.update(), this.calculateUvs()), this.calculateVertices(), this.indices = geometry.indexBuffer.data, this._tintRGB = shader._tintRGB, this._texture = shader.texture; const pluginName = this.material.pluginName; renderer.batch.setObjectRenderer(renderer.plugins[pluginName]), renderer.plugins[pluginName].render(this); } /** Updates vertexData field based on transform and vertices. */ calculateVertices() { const verticesBuffer = this.geometry.buffers[0], vertices = verticesBuffer.data, vertexDirtyId = verticesBuffer._updateID; if (vertexDirtyId === this.vertexDirty && this._transformID === this.transform._worldID) return; this._transformID = this.transform._worldID, this.vertexData.length !== vertices.length && (this.vertexData = new Float32Array(vertices.length)); const wt = this.transform.worldTransform, a = wt.a, b = wt.b, c = wt.c, d = wt.d, tx = wt.tx, ty = wt.ty, vertexData = this.vertexData; for (let i = 0; i < vertexData.length / 2; i++) { const x = vertices[i * 2], y = vertices[i * 2 + 1]; vertexData[i * 2] = a * x + c * y + tx, vertexData[i * 2 + 1] = b * x + d * y + ty; } if (this._roundPixels) { const resolution = settings.RESOLUTION; for (let i = 0; i < vertexData.length; ++i) vertexData[i] = Math.round(vertexData[i] * resolution) / resolution; } this.vertexDirty = vertexDirtyId; } /** Updates uv field based on from geometry uv's or batchUvs. */ calculateUvs() { const geomUvs = this.geometry.buffers[1], shader = this.shader; shader.uvMatrix.isSimple ? this.uvs = geomUvs.data : (this.batchUvs || (this.batchUvs = new MeshBatchUvs(geomUvs, shader.uvMatrix)), this.batchUvs.update(), this.uvs = this.batchUvs.data); } /** * Updates the bounds of the mesh as a rectangle. The bounds calculation takes the worldTransform into account. * there must be a aVertexPosition attribute present in the geometry for bounds to be calculated correctly. */ _calculateBounds() { this.calculateVertices(), this._bounds.addVertexData(this.vertexData, 0, this.vertexData.length); } /** * Tests if a point is inside this mesh. Works only for PIXI.DRAW_MODES.TRIANGLES. * @param point - The point to test. * @returns - The result of the test. */ containsPoint(point) { if (!this.getBounds().contains(point.x, point.y)) return !1; this.worldTransform.applyInverse(point, tempPoint); const vertices = this.geometry.getBuffer("aVertexPosition").data, points = tempPolygon.points, indices = this.geometry.getIndex().data, len = indices.length, step = this.drawMode === 4 ? 3 : 1; for (let i = 0; i + 2 < len; i += step) { const ind0 = indices[i] * 2, ind1 = indices[i + 1] * 2, ind2 = indices[i + 2] * 2; if (points[0] = vertices[ind0], points[1] = vertices[ind0 + 1], points[2] = vertices[ind1], points[3] = vertices[ind1 + 1], points[4] = vertices[ind2], points[5] = vertices[ind2 + 1], tempPolygon.contains(tempPoint.x, tempPoint.y)) return !0; } return !1; } destroy(options) { super.destroy(options), this._cachedTexture && (this._cachedTexture.destroy(), this._cachedTexture = null), this.geometry = null, this.shader = null, this.state = null, this.uvs = null, this.indices = null, this.vertexData = null; } }; _Mesh.BATCHABLE_SIZE = 100; let Mesh = _Mesh; export { Mesh }; //# sourceMappingURL=Mesh.mjs.map