Files
Foundry-VTT-Docker/resources/app/client-esm/dice/twister.mjs
2025-01-04 00:34:03 +01:00

258 lines
7.2 KiB
JavaScript

/**
* A standalone, pure JavaScript implementation of the Mersenne Twister pseudo random number generator.
*
* @author Raphael Pigulla <pigulla@four66.com>
* @version 0.2.3
* @license
* Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* 3. The names of its contributors may not be used to endorse or promote
* products derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
export default class MersenneTwister {
/**
* Instantiates a new Mersenne Twister.
* @param {number} [seed] The initial seed value, if not provided the current timestamp will be used.
* @constructor
*/
constructor(seed) {
// Initial values
this.MAX_INT = 4294967296.0;
this.N = 624;
this.M = 397;
this.UPPER_MASK = 0x80000000;
this.LOWER_MASK = 0x7fffffff;
this.MATRIX_A = 0x9908b0df;
// Initialize sequences
this.mt = new Array(this.N);
this.mti = this.N + 1;
this.SEED = this.seed(seed ?? new Date().getTime());
};
/**
* Initializes the state vector by using one unsigned 32-bit integer "seed", which may be zero.
*
* @since 0.1.0
* @param {number} seed The seed value.
*/
seed(seed) {
this.SEED = seed;
let s;
this.mt[0] = seed >>> 0;
for (this.mti = 1; this.mti < this.N; this.mti++) {
s = this.mt[this.mti - 1] ^ (this.mt[this.mti - 1] >>> 30);
this.mt[this.mti] =
(((((s & 0xffff0000) >>> 16) * 1812433253) << 16) + (s & 0x0000ffff) * 1812433253) + this.mti;
this.mt[this.mti] >>>= 0;
}
return seed;
};
/**
* Initializes the state vector by using an array key[] of unsigned 32-bit integers of the specified length. If
* length is smaller than 624, then each array of 32-bit integers gives distinct initial state vector. This is
* useful if you want a larger seed space than 32-bit word.
*
* @since 0.1.0
* @param {array} vector The seed vector.
*/
seedArray(vector) {
let i = 1, j = 0, k = this.N > vector.length ? this.N : vector.length, s;
this.seed(19650218);
for (; k > 0; k--) {
s = this.mt[i - 1] ^ (this.mt[i - 1] >>> 30);
this.mt[i] = (this.mt[i] ^ (((((s & 0xffff0000) >>> 16) * 1664525) << 16) + ((s & 0x0000ffff) * 1664525))) +
vector[j] + j;
this.mt[i] >>>= 0;
i++;
j++;
if (i >= this.N) {
this.mt[0] = this.mt[this.N-1];
i = 1;
}
if (j >= vector.length) {
j = 0;
}
}
for (k = this.N-1; k; k--) {
s = this.mt[i - 1] ^ (this.mt[i - 1] >>> 30);
this.mt[i] =
(this.mt[i] ^ (((((s & 0xffff0000) >>> 16) * 1566083941) << 16) + (s & 0x0000ffff) * 1566083941)) - i;
this.mt[i] >>>= 0;
i++;
if (i >= this.N) {
this.mt[0] = this.mt[this.N - 1];
i = 1;
}
}
this.mt[0] = 0x80000000;
};
/**
* Generates a random unsigned 32-bit integer.
*
* @since 0.1.0
* @returns {number}
*/
int() {
let y, kk, mag01 = [0, this.MATRIX_A];
if (this.mti >= this.N) {
if (this.mti === this.N+1) {
this.seed(5489);
}
for (kk = 0; kk < this.N - this.M; kk++) {
y = (this.mt[kk] & this.UPPER_MASK) | (this.mt[kk + 1] & this.LOWER_MASK);
this.mt[kk] = this.mt[kk + this.M] ^ (y >>> 1) ^ mag01[y & 1];
}
for (; kk < this.N - 1; kk++) {
y = (this.mt[kk] & this.UPPER_MASK) | (this.mt[kk + 1] & this.LOWER_MASK);
this.mt[kk] = this.mt[kk + (this.M - this.N)] ^ (y >>> 1) ^ mag01[y & 1];
}
y = (this.mt[this.N - 1] & this.UPPER_MASK) | (this.mt[0] & this.LOWER_MASK);
this.mt[this.N - 1] = this.mt[this.M - 1] ^ (y >>> 1) ^ mag01[y & 1];
this.mti = 0;
}
y = this.mt[this.mti++];
y ^= (y >>> 11);
y ^= (y << 7) & 0x9d2c5680;
y ^= (y << 15) & 0xefc60000;
y ^= (y >>> 18);
return y >>> 0;
};
/**
* Generates a random unsigned 31-bit integer.
*
* @since 0.1.0
* @returns {number}
*/
int31() {
return this.int() >>> 1;
};
/**
* Generates a random real in the interval [0;1] with 32-bit resolution.
*
* @since 0.1.0
* @returns {number}
*/
real() {
return this.int() * (1.0 / (this.MAX_INT - 1));
};
/**
* Generates a random real in the interval ]0;1[ with 32-bit resolution.
*
* @since 0.1.0
* @returns {number}
*/
realx() {
return (this.int() + 0.5) * (1.0 / this.MAX_INT);
};
/**
* Generates a random real in the interval [0;1[ with 32-bit resolution.
*
* @since 0.1.0
* @returns {number}
*/
rnd() {
return this.int() * (1.0 / this.MAX_INT);
};
/**
* Generates a random real in the interval [0;1[ with 32-bit resolution.
*
* Same as .rnd() method - for consistency with Math.random() interface.
*
* @since 0.2.0
* @returns {number}
*/
random() {
return this.rnd();
};
/**
* Generates a random real in the interval [0;1[ with 53-bit resolution.
*
* @since 0.1.0
* @returns {number}
*/
rndHiRes() {
const a = this.int() >>> 5;
const b = this.int() >>> 6;
return (a * 67108864.0 + b) * (1.0 / 9007199254740992.0);
};
/**
* A pseudo-normal distribution using the Box-Muller transform.
* @param {number} mu The normal distribution mean
* @param {number} sigma The normal distribution standard deviation
* @returns {number}
*/
normal(mu, sigma) {
let u = 0;
while (u === 0) u = this.random(); // Converting [0,1) to (0,1)
let v = 0;
while (v === 0) v = this.random(); // Converting [0,1) to (0,1)
let n = Math.sqrt( -2.0 * Math.log(u) ) * Math.cos(2.0 * Math.PI * v);
return (n * sigma) + mu;
}
/**
* A factory method for generating random uniform rolls
* @returns {number}
*/
static random() {
return twist.random();
}
/**
* A factory method for generating random normal rolls
* @return {number}
*/
static normal(...args) {
return twist.normal(...args);
}
}
// Global singleton
const twist = new MersenneTwister(Date.now());